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SUMMARY

The paper is concerned with the representation of mechanical

behavior of non-linear solids with memory. The nature and limi-

tations of integral representation of Fr4chet are discussed.

Definitions of state and state variables, which are based on obser-

vable histories, are introduced. These notions give rise to dif-

ferential equation representation of behavior discussed in the latter

part of the paper.
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1. INTRODUCTION

In elastic solids the stress depends on the deformation existing at the time

of measurement of the stress. For inelastic solids, such as viscoelastic or plastic

materials, this assumption is no longer valid. The current stress in such a solid

may depend in some manner and degree upon the deformations which existed in it prior

to the time of measurement. From the point of view of classical continuum mechanics

the description of mechanical behavior of inelastic solids would therefore involve

functional relationships between the stress and the deformation gradient histories.

Green and Rivlin [1] and later Green, Rivlin and Spencer [2] have shown that the

dependence of the stress on the history of deformation gradient cannot be arbitrary.

It is subject to two major restrictions. The first of these arises from the fact

that a simultaneous rotation of the deformed body and reference system must leave

the stress components unaltered. The second restriction comes from any symmetry

which the material may possess in its reference state. These authors have also con-

structed integral representations of the functional dependence of the stress on the

history of deformation gradient. A recent review of modern developments in the con-

tinuum mechanics of inelastic solids has been given by Rivlin [3].

The present paper is concerned with a critical review of the subject from the

point of view of an experimenter. The above mentioned theoretical work provides the

experimenter with the form or structure of the relationship which exists between

the histories of stress and strain. The task of filling this structure with phys-

."icalfiinformation is left to the experimenter. It is also up to the experimenter to

discover whether a given structure constitutes a convenient tool for the description

of mechanical behavior of a given solid0 It is hoped that the present survey can

"beof help to the experimenter in the performance of this double task,

For reasons of simplicity, most of the paper is restricted to the study of

a one-dimensional situation. Tw6 brief introductory sections are followed by a
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section on the strain response to a simple family of stress histories. This section

serves to illustrate a fundamental step in the study of functionals.

It is shown in Sections 4 and 5 that for certain solids Frechet's integral

representation of mechanical behavior would involve a prohibitively large number of

multiple integrals for the stress or strain histories of interest. A more con-

venient representation of mechanical behavior for such solids could be developed

by generalizing the notion of piece-wise smooth functions to functionals. An

attempt in this direction was recently made by Onat and Wang [4].

Sections 7 and 8 are devoted to a discussion of the differential equation

representation of mechanical behavior. This mode of representation, which is

intimately connected with the notions of state and state variables, has not as

yet received the full attention of the workers in the field, especially in the

area of finite deformations.

Section 7 contains a brief discussion of the notions of state and state

variables and illustrates the circumstances which allow one to represent a given

history dependence by a system of differential equations. It is noted in this

section that the differential equations representation constitutes a natural tool

for the description of the piece-wise smooth behavior encountered in plastic or

nearly plastic solids.

Ordinary plastic solids, such as structural metals at. room temperature and

at very slow strain rates, are time independent; the current strain in such ma-

terials depends on the path of stress history in the stress space, but it is in-

dependent of the speed with which the stress point moves on this path. In spite

of this simplification it is not convenient to express the path dependence of

the strain by means of an integral representation because of lack of analyticity

associated with the question of loading and unloading. In structural metals sub-

jected to high strain rates or temperatures the current strain depends on both

the stress path and the speed of the stress point on this path and the above
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mentioned difficulty associated with loading and unloading continues to exist, The

representation of mechanical behavior is more difficult in this case than in

ordinary plastic solids; however the differential equation representation for plas-

tic solids which is discussed briefly at the end of the paper can easily be modi-

fied to account for the rate effects.

The last section of the paper is concerned with the questions of repre-

sentation in the case of arbitrary deformations.

2. PHENOMENOLOGICAL STUDY OF MECHANICAL BEHAVIOR

We wish to review briefly the main steps involved in the phenomenological

study of mechanical behavior of a solid. For reasons of simplicity we first

confine ourselves to the simple case of tensile test which enables one, in prin-

ciple, to study homogeneous deformations of an initially isotropic solid under

the time dependent uniaxial tension. We shall be interested in small isothermal

deformations.

The study begins with the preparation of a number of specimens which at

the start of testing are identical in every respect.

A typical experiment involves, if a stress controlling machine is at our

disposal, application of time dependdht stress o(T) on the time interval [0,T]

and observation of the resulting time dependent strain C(T) on the same interval.
T T

The result of such an experiment is an input-output pair (o(T), E(T)) or for
(0 0

short (a,e) on the observation interval [0,T]. Different inputs, say, a(I)

a (n) may be applied to different identical specimens to obtain corresponding

outputs E(I) . . (n) The result of such a multiple experiment is a set of

input-output pairs (a (1)6(1) (n) (n)

Reproducibility of tests is a necessary condition for the specimens to be iden-
tical. Sufficient conditions for identity are more difficult, if not impossible,
to elucidate.
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The experimenter would consider that a sufficient insight is gained into the

mechanical behavior of the solid by a multiple experiment, if for the stress his-

tories (loading programs) O(T) of interest he can guess with reasonable accuracy

what the corresponding strain responses E(T) would be without performing further

tests. When this stage is reached the experimenter would like to translate the

knowledge on mechanical behavior thus gained into the mathematical language for

the purposes of transmitting it to the designer or the analyst.

The task of the experimenter is then to discover and to represent the

relationship that exists, for a given inelastic solid, between stress and strain

histories.

Problems similar to the one discussed above arise in the study of com-

munication and control systems under the name of Characterization and Representa-

tion Problems or simply the Identification Problem [5]. It is hoped that the

workers in mechanics would find it profitable to follow the considerable amount

of progress which is being made in the study of the identification problem.

Before closing this section we must point out that the study of the mech-

anical behavior is often much more difficult than the previous remarks would in-

dicate. For instance in tests involving short times, such as wave propagation

and impact experiments, the measurement of stresses is nearly impossible, so that

the experiment provides one with wave shapes and speeds measured at various

locations instead of a set of input-output pairs (a,e). The task of determining

mechanical behavior of the solid from the latter evidence is an involved one but

it is not unrelated to the class of problems discussed in this paper.

A more thorough study of mechanical behavior would involve histories of
temperature, heat flow, etc. Inclusion of these would complicate the picture
but would introduce no new conceptual difficulties.
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3. MATHEMATICAL PRELIMINARIES

We now introduce several basic concepts which are indispensable to the study

of input-output pairs. We do this not in the abstract but by referring to the

physical situation discussed above.

We start by assuming that at time T = 0 there is available a set of identical

specimens composed of the given solid. The specimens carry no stress at this time

and the strains for T k 0 are measured with respect to the configuration at T 0

so that

G(T) = 0, E(T) = 0 when T 0. (1)

We restrict the attention to the loading programs a(T) which are continuous

on the observation interval [0,T] and vanish, as (1) indicates, at T = 0. We shall

assume that the strain responses C(T) corresponding to continuous strain histories

O(T) are also continuous.

In each test the solid assigns to a given o(T) a response E(T) on the inter-

val [0,T]. An electrical engineer would, therefore, consider the solid or the

specimen as a black box. A mathematician would, on the other hand, regard the solid

as an operator and would use the following notation,

c = F[o] (2)

to express the relationship between continuous input-output pairs.defined on [0,T].

One would remain outside the realm of mathematics or physics if one did not

assign some properties of regularity to the operator F. Here we shall assume that

the operator F for the solid of interest, or for short, the solid F, is continuous.

For the purposes of the present paper it may suffice to adopt the following de-

finition of continuity:

We further assume that the solid is in the zero state at T 0; this means that
G(T) = 0 for T 2 0 implies E(T) 0 for T • 0,
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It is said that the operator F is continuous, if for each e > 0 there exists

a 6 > O.such that the inequality

S- E (2)(T)I < e on [0,T] (3)

holds for the strain responses produced by any two stress histories which.satisfy

the condition

0- c(2)(T)I < 6, on [0,T]. (4)

In more physical terms continuity of F implies that the strain responses

obtained in tests conducted with slightly different loading programs differ from

each other only slightly.

It may be safe to assert that most solids of interest exhibit this property.

However, as is well known, the Voigt solid constitutes an important exception. In

this solid slightly different strain histories may produce different stress his-

tories.

Another important property of F follows from the observation that the

happenings in the future cannot affect the present and therefore the strain at

time t depends only on the stresses on the interval [0,t]. This observation im-

plies that the operator F must have the property of causality expressed by the

symbolism'

te(it), F[a(T)]°. (5)

The above equation represents, for a given t, a functional of the stress histories

defined on [0,t]o

Another property which we may assign to F is related to the question of

"aging". The state of the solid at T = 0 may be such that, under the absence of

Here the word"different"is used in the sense of inequalities in (3) and (4).
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stress and strain for T > 0, mechanical behavior of the solid may not be affected

by the passage of time: that is to say, if e(T) and a(T) is an input-output pair,

then the following histories would also constitute an input-output pair:

0 0. 0 5T5 X

el(~t) , () :(6)C(T-X) GT x)X:T

for any non-negative x. Solids which have the above property are called time-

invariant or non-aging solids. It can be shown that for time-invariant solids

the operator F may be replaced once and for all by a single functional defined

on the interval [O,T].

4. STRAIN RESPONSE TO SIMPLE LOADING PROGRAMS

In this section we wish to illustrate several concepts introduced in the

previous sections. The present section will also prepare the ground for a dis-

cussion of integral representations of mechanical behavior.

"We consider the set of loading programs (Fig. 1) defined by

al Ti 0 T K t1
(1 T,,

U(T) = Tt (7)

a+ (a-a)t 1 _r ~t1 2- 1 t 2-t ' tl 2

where t1 and t 2 are given fixed times and a1 and a2 are arbitrary constants

satisfying the inequalities

0 a y1 and a2 : M. (8)

We wish now to focus our attention on the dependence of the strain C at time t2

on the stress histories of the type (7). Since each loading program belonging

to the above set is fully characterized by the magnitudes a1 and a2, the continu-

ous functional F in (5) reduces, for argument functions defined in (7), to a
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continuous function of a and 02:

_t
E(t) = F[N-01]- = f(olo2) (9)

The above passage from continuous functionals to continuous functions constitutes

a key step in the study of functionals.

We must emphasize again that in (7) tI and t 2 are kept constant but a and 02

are varied so that the dependence of f on tI and t 2 does not enter into the present.

considerations.

A multiple experiment, composed of n inputs of the type (7) and the corres-

ponding outputs, determines the value of f at n points in (8). If these points are

chosen suitably then the experimenter would obtain a very good idea as to what sort

of function f is; he would then be able to construct an interpolating function f

which would constitute an approximate representation of f even over the points which

are not covered by the multiple experiment. We note that the choice of n-points

may depend on the nature of f (for instance, more experimental points would be needed

over the subregions of (8) where f is "steep"). The mathematical representation of

the interpolating functions f would also depend on the nature of f, as we shall

presently see.

We wish now to review the form of f (a1,02) for some basic solidse For linear

elastic solids we have, of course,

02

C(t) = f(olo 2 ) = (10)

On the other hand, for linear viscoelastic solids

f = a1a1 + a2a2

where a and a2 are constants. We note that in this case f, the present value of

strain, depends on the stress applied at previous instances through the presence



of oI in (11). For most polymers (11) constitutes an excellent approximation for f
provided that a and a, and hence M, is sufficiently small. For higher values of M,

p tha 1a

f becomes non-linear. In some cases the non-linearity in f can be adequately repre-

sented by adding higher order times to (11). For instance an experimental study of

polypropylene fibers by Ward and Onat [6) indicated that up to the extensions of 2%

2
f aalq1 + a '2 a kE a. .a (12)

22.i~j,k i

The adequacy of the above representation may indicate that the partial derivatives

of f up to the fourth order are continuous in the domain of interest.

We next consider the rigid-plastic material defined by the stress-strain

diagram shown in Fig. 2 where Y is the yield stress and Et is the tangent modulus

which for reasons of simplicity is assumed to be constant. The function f(olO2

which describes the mechanical behavior of this material for stress histories (7)

is therefore given by

0 , 0 • all 0 <, Y

f (-Y), 1 Y, > (13)
Et l2-Y) a 2 Y, 0> >i

Note that although f is continuous, its first derivatives exhibit discontinuities

on the interfaces of the domains indicated in (13).

The following remarks concerning f defined in (13) will be useful in the

discussion of integral representations. Since f is continuous it can be approxi-

mated to any degree of accuracy by a polynomial P (01,a2) according to the theorem

of Weierstrass (see [7], p. 481). However the degree of the Weierstrass polynomial

which achieves an acceptable approximation over a closed region of interest may be

very high due to the presence of discontinuities in af/ao1 and af/a 2 in (13).

To elaborate on this remark we may consider the simple case of Y = 0 and Et = 1

where f becomes:
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f = max(al,a 2) (14)

We now consider the polynomial approximation characterized by the inequality and

the domain given below

Imax(ol,o 2 ) - P( 1 ,o 2 )I < e on 0 a 0l,02 • 1 (15)

It can be shown, using a result of Bernstein [8] concerning the related function

y = lxi that the degree N of the polynomial P(alO 2 ) in (15) must at least be
1

N e.O This result indicates once more that the Weierstrass polynomial is not

a natural tool for the representation of the piece-wise linear function defined

in (13).

5. INTEGRAL REPRESENTATION OF MECHANICAL BEHAVIOR

We begin with linear solids. A solid is said to be linear if the operator

F representing the mechanical behavior of the solid has the properties of homo-

geneity and additivity:

(a) F[Xlo] = XF[o] where X is a constant,

(b) F[a ()+ a(2)1 F[a(1)] + FV[(2)].

The last property implies that the strain response of the material to the sum

of two stress histories is equal to the sum of the strain responses to the indi-

vidual stress histories (the principle of superposition).

Riesz's well-known work on linear functionals [91 when applied to the pre-

sent case provides, for differentiable stress histories, the following integral

representation:

It will be assumed throughout the paper that all relevant quantities have been
properly non-dimensionalized.
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t7

E(t) = J(t,T) dT, (16)
0

where the function J(t,T) is independent of the argument function and characterizes

the linear solid.

When the solid is time-invariant then J becomes a function of the single

argument (t-T). The types of experiments needed for the establishment of linearity

of a given solid and for the measurement of the associated creep function J(t)

or the relaxation modulus G(t) are well-known and will not be discussed here.

Many solids of interest, such as metals subjected to high stresses, tempera-

tures or stress rates, exhibit inelastic behavior but do not possess the properties

(a) and (b) of linearity.

Representation of mechanical behavior of such nonlinear solids is a more

difficult problem. We have, of course, the following result based on Fr4chet's

work on nonlinear functionals [11] which is at our disposal for the purposes of

representation:

A continuous and causal operator F acting on the set of equicontinuous

functions a(T) on [0,T] can be represented to any desired degree of accuracy by

a sum of multiple integrals:

F[Cf(T)] - KI(t,T )G(T )dT +

0

0 t (17)

+ j... (t ... , T ....... dJ

0 0

where the kernels K. are determined by the operator independently of the argu-1

ment function o(T) and they are continuous functions of T In the case where F

is time-invariant, K. become continuous functions of t-.1

For a review of this subject see [10].

For a definition of equicontinuity or compactness see [121.
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If we are to use (17) to represent mechanical behavior of a given solid then

we must conduct a multiple experiment aimed at the determination of (a) the number

of terms to be retained in (17) for a desired degree of accuracy and (b) the kernels

defining these terms.

A multiple experiment based on the loading programs (7) discussed in the

previous section would shed light on both items. We observe first that for stress

histories (7) the sum (17) would become a polynomial of degree m in a1 and a2.

If the experiments suggest that f(ai,o 2 ) can be represented adequately by a

polynomial, say, of third degree then the indication would be that the first three

integrals should be retained in (17). One could then conduct further tests in-

volving more complicated strain histories, say, histories composed of three or

four linear segments, to see whether this initial guess remains a good one.

Such tests would also help to determine the structure of the relevant kernels K.

Studies which follow this approach have been conducted by Ward and Onat [6],

Lifshitz [13] and Onaran and Findley [14] for non-linear polymers.

Indications are that for polymers studied in the above-mentioned work, non-

linearity in behavior, which occurs when stresses become relatively large, can be

adequately represented by the first few terms of the sum (17).

For metals a different situation appears to exist° We have shown in the

previous section that for a rigid plastic material the representation of f(oi,o2)

by a polynomial would require a prohibitively larger number of terms. This would

mean therefore that a large number of terms would be needed in the Fr4chet sum

for the same material. At first sight this would not cause any concern since other

means of representation are known for such solids. However, recent work by Wang

and Onat [15] on creep of an aluminum alloy at elevated temperatures, showed that

for this material the representation of the strain response E( 1.ia2) to loading

programs composed of two steps of magnitudes 01 and 02 would also involve a poly-

nomial of high degree in 01 and 02. This is partly due to the fact that the
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function s(oi,o 2 ) behaves differently over the domain, characterized by the in-

equalities 01 > a2 and a 2 > a°"

This observation indicates that aluminum retains the piece-wise smooth

behavior associated with plasticity in spite of the occurrence of viscous effects

at high temperature.

The above remarks show that there exist solids of interest for which the

Fr6chet description of mechanical behavior would involve a large number of terms

for stress histories of interest. Such solids may be said to be strongly non-

linear. Since a constitutive law of the type (17) containing a large number of

terms is likely to be cumbersome in applications, it may be appropriate to look for

more convenient representations of mechanical behavior for strongly nonlinear

solids.

For this purpose one could try to generalize the notion of piece-wise

smooth functions to operators and functionals. Representation of a piece-wise

smooth functional would involve a sum of the type (17) containing a few multiple

integrals whenever the argument functions lie in a given sub-domain of the space

of argument functions, When one goes to an adjacent sub-domain then a different

but equally simple integral representation would take over. An attempt in this

direction has been made by Onat and Wang in [4], where they discuss order sensi-

tive, piece-wise smooth (or linear) functionalso

Representation of mechanical behavior could, in certain cases, be based

on a system of differential equations. As will be seen in sections 6 and 7, this

mode of representation is intimately connected with the notions of state and of

state variables. We will see in section 8 that representation by differential

equations is particularly suitable for strongly nonlinear solids.
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6. REPRESENTATION OF MECHANICAL BEHAVIOR BY DIFFERENTIAL EQUATIONS IN LINEAR

VISCOELASTICITY

In this introductory section and in the sections which will follow, it will

be more convenient to regard strain histories as inputs and stress histories as

outputs.

We consider a time-invariant linear solid defined by the constitutive law:jt
a(t) = JG(t-¶)t'(T)dT. (18)

We assume that the relaxation modulus G(t) is composed of a sum of exponentials:

n -t/Ti
G(t) Z G e , (19)

i=l 1

where G0 and T. are positive constants.
1 1

We introduce the following n quantities

rt _(tT)/Ti°
q. j e E'(T)dT, (20)

0

and observe by taking the time derivative of (20) that

q *t i qi(+ - )- - E*t) (21)
1 T.

1

On the other hand a combination of (18), (19) and (20) provides the equation

n
a(t) = E Giqi(t). (22)

i=l

We now observe that (21) and (22), together with the initial conditions

qi = 0 when t = 0 (23)

which follow from (20) can be regarded as the differential equation representation

of the mechanical behavior of the solid (18).

It is important to note from (21) and (22) Ik•T,4 Ag known at a givenatý gve
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time t, then a(t) can be determined for T Ž t from the knowledge of E'(T) Or

equivalently from the knowledge of e(T) - ec(t) for T Ž t. Thus if the strains

are measured for T k t with respect to the configuration at time t, the behavior

of the solid on [t,T] will depend only on the strains on [t,T] and on the qi at

time t. This remark suggests that q, may be called state variables. The existence

of a finite number of state variables implies that the mechanical behavior of

the solid does not depend on all the details of the strain history. As can be

seen from (20), those "components" of the strain rate histories E'(T).which are
¶/Ti

"orthogonal" to the functions e 1 do not contribute to qi and therefore do not

affect the future behavior of the material.

7. THE CONCEPT OF STATE. REPRESENTATION BY DIFFERENTIAL EQUATIONS.

Consider a set of specimens which have been subjected to some strain

histories on the interval [O,t]. We apply to these specimens further strains

on [t,T10 We denote the strain on [t,T] based on the configuration at time t

by e (T). In the present case of small strains we have, of course,

E (T) = C(T) - E(t), T 2 t (24)

where e(t) and E(T) are the strains referred to the zero state.

We shall say that a set of specimens are in the same state at time t if

any pair of identical strain histories *(T) on [t,T] produce in any two of these

specimens identical stress histories on [t,T].

The test pair shown in Fig. 3 suggests that the strain histories E(I) and

E (2) on [0,t] may have produced the same state at time t. In order to make sure

that this is actually the case one must conduct further test pairs using the same

strain histories e (1) and e(2) on [O,t], but different E (T) on [t,Tj]

See [16] for a further discussion. of this topic.
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A strain history on [0,t] produces a given state at time t 0 It will be of

interest to know the number of states at time t created by all strain histories on

[0,t]o This number will, in general, be infinite and some of our future remarks

will deal with comparison of infinities.

For an elastic solid all strain histories on [O,t] which have the same

terminal value E(t) produce the same state at time t. Thus all possible states

of an elastic solid at time t can be represented, in the present uniaxial case,

by points on the real axis, each point having the coordinate e(t). We may

therefore say that all possible states of an elastic solid fill the real axis

(or a segment of it, if the magnitude of strains of interest is bounded).

Next we consider a Maxwell solid in its familiar model representation

(Fig. 4). It can easily be seen from the definition of the state that two strain

histories, which at time t give rise to the same elongation in the spring of the

model, produce the same state, Therefore all possible states of the Maxwell model

also fill the real axis.

On the other hand, for the linear viscoelastic solid considered in section 6,

a state is characterized, as we have seen before, by the n quantities qi so that

the state space, for this material, is n-dimensionalo The extreme case occurs when

every distinct strain-history on [O,t] produces a different state. In this case

the state space coincides with the space of input-functions.

We now restrict the discussion to materials which possess an n-dimensional

state space. The coordinates of the state point will be denoted by qi" During

a test the state point will move in the state space starting from the point

corresponding to the state at T 0.

We wish now to prove that the stress at time t must be a function of qi(t)

and t:

a(t) = f(qi(t),t). (25)
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The proof follows from the definition of state and from the fact that the operator

F defining the mechanical behavior of the solid assigns continuous G(T) to continu-

ous E(T) on [0,T].

Consider two strain histories e() (2) on [0,T]. Assume that at time t

these histories give rise to the same state. The following continuous strain

history

(1) on [o,t]

E(T) = (26)11 * (2)

Ct(1)_t) + E (T) on [t,T]

will produce on [t,T], by the definition of the state, the same stress history

as that produced by e(2) But the stresses caused at time t by e(I) and e

defined in (26) must be the same by the above mentioned property of the operator
F. Therefore the stresses at time t produced by c(1) and (2) must be the same

which proves the assertion.

It can also be shown that if the solid is time-invariant then a in (25)

will depend only on qi(t)o

We now consider the dependence of the state variables qi on the history of

strain. It follows from the definition of state that

q = F iqj(t),t;e ] on [t,T] (27)qii

The above symbol means that qi(T) on [t,T] is related by the operator F.. to the

history of strain e (T) based on the configuration at time t, the operator itself

being a function of qi(t) and t. We may assume that the operator Fo is continuous

and causal.

Now we observe that qi becomes a given function of T on it,T] for a given

history e (T)o It is of interest to study the derivative

-- qi(T) q:(t) (28)
T =t I
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It can be shown that if the operator F. possesses a Fr6chet derivative and if

qi(T) for e (T) = 0 on [t,T] has a derivative at T = t, then

q1(t) = gi(qj(t),t) + hi(qj(t),t)J°(t), (29)

where g, and h. are functions of the indicated arguments.

Equations (25) and':(29)together•:with-the initial conditions €i(0) = q'

constitute a differential equation representation of the mechanical behavior

of the solid.

That e' appears linearly in (29) is due to the existence of the Fr6chet

derivative of Fi which may be too strong a requirement to place upon F. for some.

solids. It is likely that for solids such as metals where the behavior depends

strongly on whether there has been loading or unloading in the recent past (29)

will have the more general form

q:(t) = fi(qj, ',t) (30)

and f. will not necessarily be continuous in its arguments.1

All that has been said would remain a rather formal mathematical structure

if one cannot give broad rules concerning the types of experiments needed for the

determination of the number of state variables, and of the functions governing

their growth. It would seem that there exists no systematic study of such

questions. It should be remembered however that one rarely encounters an

entirely unknown material. With each class of materials there is available a

certain amount of knowledge of phenomenological or microscopic nature which pro-

vides starting points in such studies. A brief study of plasticity in the next

section will illustrate this point.

Rules based on simple histories of the type (7) should not be difficult to
construct.



- 19 -

8. ARBITRARY DEFORMATIONS

Green and Rivlin [E] have shown that the functional dependence of stress

on the deformation gradient history must be of the form
t

Q(t) ) D(t) F .[ )] DT (t) (31)

where a is the stress tensor, D(t) is the tensor of deformation gradients at

Ttime t, Q (t) is its transpose and F is a tensor valued functional of the strain

history on [O,t]. Here the tensor E(t) is an appropriate measure of finite strain.

The above form is such that a simultaneous rotation of the deformed body and

reference frame leaves the stress component unaltered.

In the case where the time-invariant solid is continuous and the components

£ ij(T) of the strain history belong to a set of equicontinuous functions a straight-

forward generalization of (17) provides the following integral representation

for r:

t I
F..t[ (CT)] K (t-T)Ekl(T)dT +II -0ikl k

+ Kl0n(t-Tlt-2)Ekl(T )e (T )T dT +

00iklmn 2 11 mn 2 1 2

If the solid possesses symmetry in its reference state at T = 0, then the tensor

valued kernels in the above expression must exhibit certain properties of invari-

anceo These have been studied exhaustively in recent years (see, for instance,

Rivlin [3]).

In the particular case of isotropic solids the above expression takes the

following remarkable form [1]:

We assume that at T = 0 elements of the solid are identical and are identically
oriented with respect to a fixed coordinate frame.
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F K I + It JtK(t-TV t-T')
0 °0 0 

(33)

[g(TI) ... E(TB) + C(T') o.. E(T)]d 1 ... dT

where • is the unit tensor and Ks's are polynomials in the invariants I given by

i 1 ... % V , t.

So (34)
dTl1dT.2 ... iT8

these polynomials being dependent on the arguments shown in (33).

If the strains are small enough so that terms of degree, say, higher than

the third may be neglected in comparison with those of the third degree, the

expression (33) can be simplified considerably [171. It can easily be seen that

the simplified expression contains twelve unknown functions, Lockett [17] has

shown how these functions could, in principle, be determined experimentally by

means of stress-relaxation experiments. Experimental studies based on this ap-

proach have been reported by Lifshitz [13] and Onaran and Findley [14].

The success of this approach depends on the range of validity of the

simplified expression. As remarked before., for certain polymers the range of

validity may be adequately large, but for metals it may be so small that a

different approach to the problem of representation may be needed.

In the discussion of the differential equation representation of

mechanical behavior we restrict ourselves to small deformations. For small

deformations (small shape changes, small rotations) (31) reduces to

t
q(t) t=.E[E(T)],, (35)

0

where E now is the strain tensor employed in the classical theory of elasticity,

If one considers a time-invariant material equations (25) and (30) take
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the form

o ij(t) = f ij(q (t)),

(36)
oq'(t) = f (q6(t), E!.(t)),

where a.. and e.. are, respectively, the components of the stress and strain

tensors, in a fixed rectangular frame.

An important question which must be faced at this stage is concerned with

the possible tensorial character of the state variables. The state variables can

be regarded as average quantities describing the microscopic structure of the

solid and therefore it would be natural to expect that they will be tensor valued.

It can also be argued that it would be more convenient to work with tensor

valued state variables. For instance, if the state variables are tensor valued

then one could apply recent results [18] on the form invariance to (36) to obtain

a representation appropriate to isotropic solids.

We now consider briefly the representation of elastic-plastic behavior.

It is convenient in this case to regard the stress histories as inputs. Constitu-

tive equations for an elastic-plastic solid have the following structure, which

is similar to (36):

E ij(t) = Cijkl'kl(t) + fij(q (t)), (37)

f Ukl(CjCt),q6(t))a*(t) (a)
=i k (38)

a 0(b)

The first term in (37) represents elastic components of the strain, the second

represents the plastic components. The latter depend on the history of stress

Generalization of the definitions of state and state variables to the present
case of arbitrary small deformations is self-evident and will not be given here°

For a detailed discussion of the stress-strain relations in Plasticity, see [19].
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and hence are functions of the state variables q.

In (38) the case (a) occurs when the current stress point is on the yield

surface and is moving out of it at the instant of interest:

t) qM(t)) q ) 0 and "f a:. > 0. (a)ij i]

The function f which defines the yield surface depends on the history through

the state variables q."

The case (b) occurs when Mi) the stress point is within the yield surface

or (ii) the stress point is on the yield surface, but it is not moving out:

f<0, or f = 0 and If a: < 0. (b)

It may be of interest to comment here on the number n of state variables.

In a similar treatment of Plasticity, Kr3ner [201 uses, as state variables, the

components of a symmetric second order tensor which is a measure of the disloca-

tion loop density. Green and Naghdi's treatment of Plasticity [21] involves, in

the present context, seven state variables, six of them being the components of

the plastic strain tensor.

In his theory of strain-hardening, Prager [22] assumes that the yield sur-

face moves in the stress space with no change ih shape and orientation. Therefore

Prager's theory involves six state variables.

Experiments are, of course, the ultimate source of information on the

number of state variables. A multiple experiment based on different stress his-

tories will produce a family of yield surfaces. The number of parameters needed
0

for a (approximate) description of this family can be taken, as a first guess,

as the number of state variables.
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